Harvard LPPC Seminar

Cambridge, February 13, 2007

Evidence for production of single top quarks at DØ and a first direct measurement of |V_{th}|

- Electroweak production of top quarks at DØ
- Event selection and background estimation
- Multivariate methods
 - Decision Trees, Matrix Elements, Bayesian NN
- Cross checks. Expected sensitivity
- Cross sections and significance
- ► First direct measurement of |V_{tb}|
- Summary

The Tevatron

The highest energy particle accelerator in the world!

Proton-antiproton collider

Run I 1992-1995
Top quark discovered!

Run II 2001-09(?)

 $\sqrt{s} = 1.96 \text{ TeV}$

 $\Delta t = 396$ ns

>2fb⁻¹ delivered

Peak Lum: 3·10³²cm⁻²s⁻¹

DØ for Run II

Data taking

Top quark physics

The top quark is a very special fermion:

- ► Heaviest known particle: 171.4±2.1 GeV
 - $m_t \sim v/\sqrt{2}$, $\lambda_t \sim 1 \rightarrow \text{Related to EWSB!}$
 - Sensitive probe for new physics, FCNCs, ...
- ▶ Decays as a free quark: $\tau_{\rm t}$ =5×10⁻²⁵ s $\ll \Lambda_{\rm QCD}^{-1}$
 - Spin information is passed to its decay products
 - Test V-A structure of the SM

We still don't know: spin, width, lifetime

We know the mass, cross section, charge and its BR(t→Wb)~1
Plenty of room for new physics

Top quark electroweak production

s-channel (tb)

$$\sigma_{\text{NLO}}$$
=0.88±0.11 pb

Current limits @ 95% C.L.:

DØ (370pb⁻¹)
$$\sigma_{tb}$$
<5.0pb

CDF (700pb⁻¹)
$$\sigma_{tb}$$
 < 3.1pb

$$\sigma_{\rm NLO} = 1.98 \pm 0.25 \ {\rm pb}$$

Current limits @ 95% C.L.:

DØ (370pb⁻¹)
$$\sigma_{tab}$$
<4.4pb

CDF (700pb⁻¹)
$$\sigma_{tqb}$$
<3.2pb

CDF (960pb
$$^{-1}$$
) Lhood: tb+tqb < 2.7 pb

NN:
$$tb+tqb < 2.6 pb$$

ME: tb+tqb =
$$2.7^{+1.5}_{-1.3}$$
 pb (2.3 σ)

Arán García-Bellido

First evidence for single top

Why search for single top?

- Access W-t-b coupling
 - measure V_{th} directly → more on this later
 - test unitarity of CKM
- New physics:
 - s-channel sensitive to resonances: W', top pions, SUSY, etc...
 - t-channel sensitive to FCNCs, anomalous couplings
- Source of polarized top quarks
- Extract small signal out of a large background

DØ search: hep-ex/0607102 Arán García-Bellido DØ search: hep-ex/0702005 First evidence for single top

A big challenge!

~20 single top events produced per day

But huge backgrounds!

We have benefited greatly from the following improvements for this analysis:

- ▶ Background model improvements (PS↔ME matching: MLM)
- Fully reprocessed dataset: new calibrations, jet thresholds, JES,...
- New more efficient NN b-tagger
- Split channels by jet multiplicity
- Combined s+t search added (SM s:t ratio is assumed)

Arán García-Bellido

First evidence for single top

Signal selection

Signature:

- One high p_T isolated lepton (from W)
- \blacksquare MET (ν from W)
- One b-quark jet (from top)
- A light flavor jet and/or another b-jet

Event selection:

- Only one tight (no loose) lepton:
 - •e: $p_{\tau} > 15$ GeV and $|\eta^{\text{det}}| < 1.1$
 - μ : p_T > 18 GeV and $|\eta^{\text{det}}| < 2.0$
- ► MET > 15 GeV
- **▶** 2-4 jets: $p_{\tau} > 15$ GeV and $|\eta^{\text{det}}| < 3.4$
 - •Leading jet: $p_T > 25 \text{GeV}$; $|\eta^{\text{det}}| < 2.5$
 - •Second leading jet: $p_T > 20 \text{ GeV}$
- One or two b-tagged jets

NN b-jet tagger

- NN trained on 7 input variables from SVT, JLIP and CSIP taggers
- Much improved performance!
 - Fake rate reduced by 1/3 for same b-efficiency relative to previous tagger
 - Smaller systematic uncertainty
- ► Tag Rate Functions (TRFs) in η , p_T and z-PV derived in data are applied to MC
- Our operating point:
 - b-jet efficiency: ~50%
 - c-jet efficiency: ~10%
 - Light-jet efficiency: ~0.5%

Detector Pseudorapidity Inl

TRF after scaling to match tagger on data

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0.2

Background modeling

- ► W+jets: ~o(1000) pb
 - Distributions from Alpgen 2.0
 - Normalization from data
 - Heavy flavor fractions from data
- ► Top pairs: ~7 pb
 - Topologies: dilepton and ℓ +jets
 - Use Alpgen 2.0 with MLM matching
 - Normalize to NNLO σ
- Multijet events (misidentified lepton)
 - From data

Agreement before tagging

- Normalize W+jets and QCD yields to data before tagging
- Check 90 variables (in e,mu x 2,3,4 jets)
- Good description of data

Yields after event selection

	Event Yields in 0.9 fb ⁻¹ Data Electron+muon, 1tag+2tags combined			
Source	2 jets 3 jets		4 jets	
tb	16 ± 3	8 ± 2	2 ± 1	
tqb	20 ± 4	12 ± 3	4 ± 1	
$t\bar{t} \rightarrow II$	39 ± 9	32 ± 7	11 ± 3	
<i>tt̄</i> → /+jets	20 ± 5	103 ± 25	143 ± 33	
W+bb̄	261 ± 55	120 ± 24	35 ± 7	
W+cc̄	151 ± 31	85 ± 17	23 ± 5	
W+jj	119 ± 25	43 ± 9	12 ± 2	
Multijets	95 ± 19	77 ± 15	29 ± 6	
Total background	686 ± 41	460 ± 39	253 ± 38	
Data	697	455	246	

- Optimized the selection to maximize acceptance $tb = (3.2 \pm 0.4)\%$ $tqb = (2.1 \pm 0.3)\%$
- Allow a lot of background at this stage!
- Then use multiple distributions to separate signal-background

Event selection and S:B

Percentage of single top tb+tqb selected events and S:B ratio (white squares = no plans to analyze)							
Electron + Muon	1 jet	2 jets	3 jets	4 jets	≥ 5 jets		
0 tags	10%	25% 1:390	1: 300	3% 1 : 270	1% □ 1:230		
1 tag	1:100	21% 1:20	11% 1 : 25	3% 1 : 40	1% □ 1:53		
2 tags		3% 1 : 11	2% 1 : 15	1% ■ 1 : 38	0% □ 1:43		

Systematic uncertainties

- Uncertainties are assigned per background, jet multiplicity, lepton channel, and number of tags
- Uncertainties that affect both the normalization and the shapes: JES and tag rate functions
- Correlations between channels and sources are taken into account

Examples	of F	Relative	Systematic	Uncertainties
----------	------	----------	------------	---------------

1	
$tar{t}$ cross section	18%
Luminosity	6%
Electron trigger	3%
Muon trigger	6%
Jet energy scale	wide range
Jet fragmentation	5-7%
Heavy flavor ratio	30%
Tag-rate functions	2–16%

And check 1000s of plots again...

Arán García-Bellido

First evidence for single top

Analysis methods

- Once we understand our data, need to measure the signal
- ▶ We cannot use simple cuts to extract the signal: use multivariate techniques
- ▶ DØ has implemented three analysis methods to extract the signal from the **same dataset**:

Decision Trees

Matrix Elements

Bayesian NNs

- DT and BNN use same pool of discriminating variables
- ME method uses 4-vectors of reconstructed objects
- Optimized separately for s-channel, t-channel and s+t
- Test response and robustness with ensemble testing

Decision Trees

Machine learning technique widely used in social sciences Idea: recover events that fail criteria in cut-based analysis

Start with all events (first node)

- For each variable, find the splitting value with best separation between children
- Select best variable and cut: produce Pass and Failed branches
- Repeat recursively on each node
- Stop when improvement stops or when too few events left
- Terminal node: leaf with purity = $N_s/(N_s+N_B)$
- Output: purity for each event

Decision Trees + Boosting

Boosting is a recent technique to improve the performance of any weak classifier: recently used in DTs by GLAST and MiniBooNE

AdaBoost algorithm: adaptive boosting

- 1) Train a tree T_k
- 2) Check which events are **misclassified** by T_k
- 3) Derive tree weight α_k
- 4) Increase weight of misclassified events
- 5) Train again to build T_{k+1}
- We have trained 36 separate trees:
 (s, t, s+t)x(e,mu)x(2,3,4 jets)x(1,2 tags)
- Use 1/3 of MC events for training
- For each signal, train against sum of backgrounds
- Signal leaf if purity>0.5; Minimum leaf size=100 events; Goodness of split: Gini factor; Adaboost β =0.2; boosting cycles=20

Decision Trees: 49 variables

Object Kinematics $p_T(jet1)$ $p_T(jet2)$ p_T (jet3) $p_{T}(jet4)$ $p_T(best1)$ p_T(notbest1) p_{τ} (notbest2) $p_T(tag1)$ $p_T(untag1)$

Angular Correlations

 $p_T(untag2)$

```
\Delta R(jet1,jet2)
cos(best1,lepton)besttop
cos(best1,notbest1)_{besttop}
\cos(tag1,alljets)_{alljets}
\cos(tag1, lepton)_{btaggedtop}
\cos(\text{jet1,alljets})_{	ext{alljets}}
cos(jet1, lepton)_{btaggedtop}
\cos(\text{jet2,alljets})_{	ext{alljets}}
\cos(\text{jet2}, \text{lepton})_{\text{btaggedtop}}
\cos(\operatorname{lepton}, Q(\operatorname{lepton}) \times z)_{\operatorname{besttop}}
cos(lepton_{besttop}, besttop_{CMframe})
cos(lepton_{btaggedtop}, btaggedtop_{CMframe})
cos(notbest, alljets)_{alljets}
cos(notbest, lepton)_{besttop}
\cos(untag1,alljets)_{alljets}
cos(untag1, lepton)_{btaggedtop}
```

```
Event Kinematics
 Aplanarity (alljets, W)
 M(W, best1) ("best" top mass)
 M(W, tag1) ("b-tagged" top mass)
 H_{\tau} (alljets)
 H_T (alljets—best1)
 H_T (alljets—tag1)
 H_T (alljets, W)
 H_T (jet1, jet2)
 H_T (jet1, jet2, W)
 M(alljets)
 M(alljets-best1)
 M(alljets-tag1)
 M(jet1, jet2)
 M(\text{jet1,jet2},W)
 M_T(jet1,jet2)
 M_T(W)
 Missing E_T
 p_T (alljets — best 1)
 p_T (alljets—tag1)
 p_T (jet1,jet2)
 Q(lepton) \times \eta(untag1)
 Sphericity(alljets,W)
```

```
Most discrimination:
        M(alljets)
       M(W, tag1)
cos(tag1,lepton)<sub>btaggedtop</sub>
Q(lepton) x \eta(untag1)
```

- Adding variables does not degrade performance
- Tested shorter lists, lose some sensitivity
- Same list used for all channels

Matrix Elements method

- The idea is to use all available kinematic information from a fully differential cross-section calculation
- Calculate an event probability for signal and background hypothesis

$$P(\vec{x}) = \frac{1}{\sigma} \int f(q_1; Q) dq_1 f(q_2; Q) dq_2 \times |M(\vec{y})|^2 \phi(\vec{y}) dy \times W(\vec{x}, \vec{y})$$

Parton distribution functions CTEQ6

Differential cross section (LO ME from Madgraph)

Transfer Function: maps parton level (y) to reconstructed variables (x)

- Uses the 4-vectors of all reconstructed ℓ s and jets
- This analysis: 2&3 jet events only, match partons to jets
- Apply b-tagging information

Integrate over 4 independent variables: assume angles well measured, known masses, momentum and energy conservation

ME discriminant

Define discriminant based on event probabilities for signal and background

$$D_s(\vec{x}) = P(S|\vec{x}) = \frac{P_{Signal}(\vec{x})}{P_{Signal}(\vec{x}) + P_{Background}(\vec{x})}$$

- In 2 jet events: use ME for Wbg, Wcg and Wgg backgrounds
- ▶ In 3 jet events: use ME for Wbbg background
- No ttbar ME used thus far: no separation in the 3rd jet bin!

Arán García-Bellido

First evidence for single top

Bayesian Neural Networks

A different sort of NN (http://www.cs.toronto.edu/radford/fbm.software.html):

- Instead of choosing one set of weights, find posterior probability density over all possible weights
- Averages over many networks weighted by the probability of each network given the training data

▶ Use 24 variables (subset of the DT variables) and train against

sum of backgrounds

Advantages:

- Less prone to overfitting, because of Bayesian averaging
- Network structure less important: can use large networks!
- Optimized performance

Disadvantages:

Computationally demanding!

Arán García-Bellido

First evidence for single top

Measuring the cross section

- We form a binned likelihood from the discriminant outputs
- Probability to observe data distribution D, expecting y:

$$y = \alpha \mathcal{L} \sigma + \sum_{s=1}^{N} b_{s} = a\sigma + \sum_{s=1}^{N} b_{s}$$
signal bkgd.

$$P(D|y) \equiv P(D|\sigma,a,b) = \prod_{i=1}^{nbins} P(D_i|y_i)$$

And obtain a Bayesian posterior probability density as a function of the cross section:

$$Post(\sigma|D) \equiv P(\sigma|D) \propto \int_{a} \int_{b} P(D|\sigma, a, b) Prior(\sigma) Prior(a, b)$$

- Shape and normalization systematics treated as nuisance parameters
- Correlations between uncertainties properly accounted for
- Flat prior in signal cross section

Arán García-Bellido

First evidence for single top

Ensemble testing

- To verify that all this machinery is working properly, we test with many sets of pseudo-data
- Wonderful tool to test analysis methods! Run DØ experiment 1000s of times
- Use pool of MC events to draw events with bkgd. yields fluctuated according to uncertainties, reproducing the correlations between components introduced in the normalization to data
- Randomly sample a Poisson distribution to simulate statistical fluctuations
- Generated ensembles include:
 - 1) 0-signal ensemble ($\sigma_{s+t} = 0$ pb)
 - 2) SM ensemble (σ_{s+t} = 2.9 pb)
 - 3) "Mystery" ensembles to test analyzers (σ_{s+t} = ?? pb)
 - 4) Ensemble at measured cross-section ($\sigma_{\rm s+t} = \sigma_{\rm measured}$)
 - 5) A high luminosity ensemble
- Each analysis tests linearity of "response" to single top

Responses

Using the ensemble tests:

- SM ensemble is returned at the right value
- "Mystery" ensembles are unraveled
- Linear response is achieved

ME analysis

BNN analysis

Statistical Analysis

Before looking at the data, we want to know two things:

- What precision should we expect for a measurement?
 - **Expected cross section**: set data=s+b prediction in each bin
- ▶ By how much can we expect to rule out backgrnd.-only hypothesis?
 - **Expected p-value**: the fraction of zero-signal pseudo-datasets in which we measure at least 2.9 pb
 - For a Gaussian distribution, convert p-value into **expected significance**

With the data, we want to know:

- What cross section do we measure?
 - Use data events in each bin to obtain observed cross section
- How well do we rule out the background-only hypothesis?
 - **Observed p-value**: the fraction of zero-signal pseudo-datasets in which we measure at least the observed cross section
 - Convert p-value to give observed significance
- ▶ How consistent is the measured cross section with the SM value?
- Consistency with SM: fraction of SM-signal pseudo-datasets in which are Garcia-Bellido the phserved cross section top 27

Expected p-values and σ

Decision Trees

p-value 1.9% exp. sig. 2.1σ

Matrix Elements

p-value 3.7% exp. sig. 1.8σ

Bayesian NN

p-value 9.7% exp. sig. 1.3σ

Arán García-Bellido

First evidence for single top

DT cross check samples

Check the description of the data in the DT output

- W+jets: 2 jets and H_⊤(lepton,MET,alljets) < 175 GeV</p>
- tt: 4 jets and and $H_{\tau}(lepton, MET, alljets) > 300 GeV$

ME cross check samples

Check the description of the data in the ME output

- Soft W+jets: H_⊤(lepton,MET,alljets) < 175 GeV</p>
- Hard W+jets: H_T(lepton,MET,alljets) > 300 GeV

Arán García-Bellido

First evidence for single top

Bayesian NN observed results

Least sensitive (a-priori) analysis sees a 2.4σ effect!

Matrix Elements observed results

Posterior Density: $e+\mu$ w/ 2+3 Jets and >=1 Tag

 2.9σ excess!

SM compatibility = 21%

Decision Trees observed results

 $\sigma = 4.9 \pm 1.4 \text{ pb}$

 3.4σ excess!

SM compatibility = 11%

DT summary

First evidence for single top

Excess in the high discriminant regions

ME event characteristics

ME Discriminant < 0.4

ME Discriminant > 0.7

Arán García-Bellido

First evidence for single top

10

Q x Eta

DT event characteristics

A candidate event

s+t summary: all methods

DØ Run II preliminary

 0.9 fb^{-1}

Correlations

Take the 50 highest ranked data events in each method and look for overlap:

Technique	Electron	Muon
DT vs ME	52%	58%
DT vs BNN	56%	48%
ME vs BNN	46%	52%

Calculate the linear correlation between the measured cross sections in the same 400 members of the SM ensemble

	DT	ME	BNN
DT	100%	39%	57%
ME		100%	29%
BNN			100%

CKM matrix element V_{th}

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix} \qquad \begin{matrix} \mathbf{q} \\ \mathbf{q} \\ \mathbf{q} \end{matrix}$$

- Weak interaction eigenstates and mass eigenstates are not the same: there is mixing between quarks → CKM matrix
- In SM: top must decay to W and d, s or b quark
 - $V_{td}^2 + V_{ts}^2 + V_{tb}^2 = 1$
 - Strong constraints on V_{td} and V_{ts} : $V_{tb} > 0.998$
 - Assuming unitarity and 3 generations: B(t→Wb)~100%
- ▶ If there is new physics:
 - $V_{td}^2 + V_{ts}^2 + V_{tb}^2 < 1$
 - No constraint on V_{tb}
 - Interactions between the top quark and weak gauge bosons are extremely interesting!

Measuring |V_{th}|

- Once we have a cross section measurement, we can make the first direct measurement of $|V_{th}|$
- ▶ Calculate posterior in $|V_{th}|^2$: $\sigma \propto |V_{th}|^2$

Additional theoret	ical errors	are needed	49
	5	t	307
top mass	13%	8.5%	hep-ph/0408049
scale	5.4%	4.0%	h/0
PDF	4.3%	10.0%	d-d
$\alpha_{m s}$	1.4%	0.01%	he

Most general Wtb vertex:

$$\Gamma^{\mu}_{tbW} = -\frac{g}{\sqrt{2}} \, V_{tb} \, \left\{ \gamma^{\mu} \, \left[f_1^L \, P_L + f_1^R \, P_R \right] - \frac{i \, \sigma^{\mu\nu}}{M_W} \, (p_t - p_b)_{\nu} \, \left[f_2^L \, P_L + f_2^R \, P_R \right] \, \right\}$$

- Assume:
 - SM top decay: $V_{td}^2 + V_{ts}^2 \ll V_{th}^2$
 - Pure V-A interaction: $\mathbf{f_1}^R = \mathbf{0}$
 - CP conservation: $\mathbf{f_2}^L = \mathbf{f_2}^R = \mathbf{0}$

No need to assume three quark families or CKM matrix unitarity!

We are effectively measuring the **strength of the V-A coupling**:

 $|\mathbf{V}_{tb}\mathbf{f}_{1}^{L}|$, which can be >1

Arán García-Bellido

First evidence for single top

First direct measurement of |V_{th}|

This measurement does not assume 3 generations or unitarity

Conclusions

First evidence for single top quark production and direct measurement of |V_{th}|

(hep-ex/0612052 submitted to PRL)

$$\sigma$$
(s+t) = 4.9 ± 1.4 pb
3.4 σ significance!
 $|V_{tb}| > 0.68 @ 95\%C.L.$

- Working on the combination and more!
- Expand to searches of new phenomena
- We now have double the data to analyze!

Extra slides

CDF's latest results

Single top prospects

- By 2008 we will have observed single top and measured its cross section to ~10% at the Tevatron
- Then the LHC will start with huge production rates:

$$\sigma_{\rm s}$$
=10.6±1.1 pb

$$\sigma_{s} = 10.6 \pm 1.1 \text{ pb}$$
 $\sigma_{t} = 246.6 \pm 17 \text{ pb}$

$$\sigma_{tw}$$
=62.0^{+16.6}_{-3.6} pb

- Observe all three channels (s-channel will be tough)
- tW mode offers new window into top physics
- ► Measure V_{th} to a few %
- Large samples: study properties

Preparing the way for the LHC

Studies at the Tevatron will help the LHC:

- ► Wbb measurement (will also help WH search) (DØ: hep-ex/0410062) Current limit at 4.6 pb for $p_T(b)>20$ GeV
- In general, W+jets background determination techniques tt will be main background, but large uncertainties come from W+jets Effect of jet vetoes (N_{iet}=2), check other methods planned in LHC analyses
- Study charge asymmetries (Bowen, Ellis, Strassler: hep-ph/0412223) Signal shows asymmetry in $(Q_{\ell} \times \eta_{j}, Q_{\ell} \times \eta_{\ell})$ plane at TeV
- Study kinematics of forward jets in t-channel (WW→H at LHC)
- Even measure asymmetry in production rate (Yuan: hep-ph/9412214) (probe CP-violation in the top sector):

$$A_{t} = \frac{\sigma(p\bar{p} \to tX) - \sigma(p\bar{p} \to \bar{t}X)}{\sigma(p\bar{p} \to tX) + \sigma(p\bar{p} \to \bar{t}X)}$$

TeV4LHC workshop report to appear soon

Crash course in Bayesian probability

Bayes' theorem expresses the degree of belief in a hypothesis A, given another B. "Conditional" probability P(A|B):

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

In HEP:
$$B \rightarrow N_{observed}$$
, $A \rightarrow n_{predicted} = n_{signal} + n_{bkgd}$, $n_s = Acc*L*\sigma$

P(B|A): "model" density, or likelihood:
$$L(N_{observed}|n_{predicted})=n^Ne^{-n}/N!$$

P(A): "prior" probability density
$$\prod (n_{pred}) = \prod (Acc*L, n_b) \prod (\sigma)$$

 $\prod (n_s, n_b)$ multivariate gaussian; $\prod (\sigma)$ assumed flat

$$P(A|B)$$
: "posterior" probability density $P(n_{predicted}|N_{observed})$

$$P(n_{predicted}|N_{observed}) = 1/Z L(N_{observed}|n_{predicted}) \prod (n_{pred})$$

Arán García-Bellido

First evidence for single top

Non-SM couplings

Top is a good place to look for deviations from SM:

- σ under control, one dominant decay t \rightarrow Wb, no top hadrons,...
- Generalized Lagrangian for the Wtb interaction (hep-ph/0503040):

$$\mathcal{L}_{tbW} = \frac{g}{\sqrt{2}} W_{\mu}^{-} \bar{b} \gamma^{\mu} \left(f_{1}^{L} P_{L} + f_{1}^{R} P_{R} \right) t \qquad \qquad \qquad f_{1}: \text{ "vector"-like}$$

$$- \frac{g}{\sqrt{2} M_{W}} \partial_{\nu} W_{\mu}^{-} \bar{b} \sigma^{\mu\nu} \left(f_{2}^{L} P_{L} + f_{2}^{R} P_{R} \right) t \qquad + h.c. \qquad P_{\text{R(L)}} = (1 \pm \gamma_{5})/2$$

$$\ln \text{SM: } f_{1}^{L} = \text{V}_{\text{tb}} \sim 1;$$

$$f_{1}^{R} = f_{2}^{L} = f_{2}^{R} = 0$$

Effective single top production cross section:

There are strong bounds on tensor couplings: from unitarity $|f_2| < 0.6$, and from $b \rightarrow s_{\gamma}$: $|f_2^{\perp}| < 0.004$

But Tevatron can set direct limits. The goal is:

- Set limits simultaneously on all four couplings
- Set individual limits

Non-SM couplings strategy

 f_1^L and f_1^R have same p_T distributions Angular variables and spin are different

- Separate data into s-channel (2 tags) and t-channel (1tag+≥1untag) samples based on NN output
- Top quark spin correlations separate between L and R couplings

tb: Helicity basis θ (lepton, top direction)

tqb: Optimal basis θ (lepton,pbar)

- Use flat prior for four square terms: $|f_1^L|^2$, $|f_1^R|^2$, $|c_1^L|^2$, $|c_1^L|^2$, $|c_1^L|^2$, $|c_1^L|^2$, $|c_1^L|^2$, $|c_1^L|^2$, $|c_1^L|^2$
- Obtain limits on these four terms

Signal modeling

Have to get the t-channel right:

Avoid double counting when different diagrams produce same final states in different kinematic regions
Use ZTOP as NLO benchmark http://home.fnal.gov/~zack/ZTOP

DØ: "Effective" NLO CompHEP (also used in CMS)

Match $2\rightarrow 2$ and $2\rightarrow 3$ processes using b p_T for cross over, normalize to NLO

Resulting distributions agree well with ZTOP & MCFM

► Recently available: MC@NLO, MCFM, Alpgen 2, C.-P. Yuan et al.

W+jets normalization

▶ Find fractions of real and fake isolated ℓ in the data before b-tagging. Split samples in loose and tight isolation:

$$N^{loose} = N_{fake}^{loose} + N_{real}^{loose}$$
 $N^{tight} = \varepsilon_{fake} N_{fake}^{loose} + \varepsilon_{real} N_{real}^{loose}$
Obtain: N_{real}^{loose} and N_{fake}^{loose}

Normalize the MC Wjj and Wbb samples to the real ℓ yield found in data, after correcting for the presence of tt events:

$$\varepsilon_{real} N_{real}^{loose} = SF[Y(Wjj) + Y(Wb\overline{b}) + Y(Wc\overline{c})] + Y(t\overline{t})$$
 SF=1.4

- ► The sum Y(Wjj)+Y(Wbb)+Y(Wcc) is done according to the ratio of (Wbb+Wcc)/Wjj found in 0-tag data \rightarrow 1.5±0.5
- Then apply b-tagging
 - ▶ Greatly reduce W+jets background (Wbb ~1% of Wjj)
 - Shift distributions, changes flavor composition

Wbb and Wcc fraction

- We use our own data to derive the Wbb+Wcc fraction: something very close to 1.5 is needed to describe our data
- This is not a measurement of Wbb, but a fraction determination. The full W+jets yield is scaled to data
- Until we have our own measurement, this is the best we can do

Scale Factor α to Match Heavy Flavor Fraction to Data				
	1 jet	2 jets	3 jets	4 jets
Electron Channel				
0 tags	1.53 ± 0.10	1.48 ± 0.10	1.50 ± 0.20	1.72 ± 0.40
1 tag	1.29 ± 0.10	1.58 ± 0.10	1.40 ± 0.20	0.69 ± 0.60
2 tags	_	1.71 ± 0.40	2.92 ± 1.20	-2.91 ± 3.50
Muon Channel				
0 tags	1.54 ± 0.10	1.50 ± 0.10	1.52 ± 0.10	1.38 ± 0.20
1 tag	1.11 ± 0.10	1.52 ± 0.10	1.32 ± 0.20	1.86 ± 0.50
2 tags	_	1.40 ± 0.40	2.46 ± 0.90	3.78 ± 2.80

What about shapes?

- NLO shapes for Wbb are different from Alpgen (LO)
- ▶ Specially at low b-jet p_T (<25GeV) and m_{bb} (<25GeV & >80GeV)
 - Until we have a data-based method to extract Wbb or a pT dependent k-factor from MC, we are stuck with a constant
 - Let the data judge. We have found overall good agreement in all kinds of distributions inside our acceptance before and after tagging: angular correlations, pTs, background cross check samples, discriminant outputs...

Arán García-Bellido

First evidence for single top

Wbb/Wcc shape difference

- Can you assume that Wbb and Wcc fractions separately can be described by the Wbb+Wcc fraction?
 - We changed the Wbb/Wcc ratio by ±10% and re-calculated the single top cross section:
 - More Wbb, less Wcc: $\sigma(tb+tqb)=4.85\pm1.4pb$
 - Less Wbb, more Wcc: $\sigma(tb+tqb)=4.98\pm1.5pb$

 Weak dependence based on similarity between Wbb and Wcc shapes

Wip =1tag Wip =1 tag Entries 241581 **Entries 373918** Mean 54.89 Mean 23.65 RMS RMS 30.28 Wcc =1tag Wcc =1tac **Entries** 55951 **Entries** 77354 38.83 Mean Mean 20.91 Wbb =1tag Wbb =1tag **Entries** 70768 **Entries** 96851 Mean 38.08 Mean 52.92 RMS 20.27 RMS 29.29 160 180 200 220 240 Leading b-Tagged Jet P. 140

Error on the HF fraction

- How come a 30% error on HF fraction doesn't destroy all sensitivity?
 - This (still) is a statistics limited analysis: 1.2pb out of 1.4pb error comes from stats alone
 - The 30% error (1.5±0.45) covers shape differences in the NLO distributions and between Wbb and Wcc
 - After tagging, the uncertainty on the total W+jets yield is reduced from 30% because:
 - **a)** Not the entire sample is Wbb+Wcc, the uncertainty on the sum is smaller than 30%
 - **b)** The anti-correlation between Wjj and Wbb+Wcc due to the normalization before tagging further reduces the uncertainty
 - This uncertainty is still the largest flat systematic in the end

Three different algorithms for b-jet identification at DØ:

- Two based on tracks with large IP (JLIP, CSIP)
- One based on secondary vertex reconstruction (SVT)
- ► Combine in NN

Tagging b-jets

Ensemble testing details

- Use a pool of weighted signal+background events (about 850k in each of electron and muon)
- Fluctuate relative and total yields in proportion to systematic errors
 - reproducing the correlations between backgrounds imposed by our normalization to data
- Randomly sample from a Poisson distribution about the total yield to simulate statistical fluctuations
- Generate a set of pseudo-data (a member of the ensemble)
- Pass the pseudo-data through the full analysis chain (including systematic uncertainties)

Systematics

Relative Systematic Uncertainties

$t\bar{t}$ cross section	18%	Primary vertex	3%
Luminosity	6%	Electron reco * ID	2%
Electron trigger	3%	Electron trackmatch & likelihood	5%
Muon trigger	6%	Muon reco * ID	7%
Jet energy scale	wide range	Muon trackmatch & isolation	2%
Jet efficiency	2%	$\varepsilon_{\mathrm{real}-e}$	2%
Jet fragmentation	5–7%	$\varepsilon_{\mathrm{real}-\mu}$	2%
Heavy flavor fraction	30%	$\varepsilon_{\mathrm{fake}-e}$	3-40%
Tag-rate functions	2–16%	$\varepsilon_{\mathrm{fake}-\mu}$	2-15%

Combined DT ouptut

Full combined DT output, with different binning from the plot in PRL

tb and tqb separately

Arán García-Bellido

First evidence for single top

s-Channel tb Cross Section [pb]